# New AI 'mathematician' reveals hidden patterns in numbers ### The new artificially intelligent 'Ramanujan Machine' can potentially reveal hidden relationships between numbers.

Iran Press/America: The "machine" consists of algorithms that seek out conjectures, or mathematical conclusions that are likely true but have not been proved. Conjectures are the starting points of mathematical theorems, which are conclusions that have been proved by a series of equations.

The set of algorithms is named after Indian mathematician Srinivasa Ramanujan. Born in 1887 to a store clerk and a homemaker, Ramanujan was a child prodigy who came up with many mathematical conjectures, proofs and solutions to equations that had never before been solved. In 1918, two years before his early death from disease, he was elected as a Fellow of The Royal Society London, becoming only the second Indian man to be inducted after marine engineer Ardaseer Cursetjee in 1841.

Math by machine

Machine learning, in which an algorithm detects patterns in large amounts of data with minimal direction from programmers, has been put to use in a variety of pattern-finding applications, from image recognition to drug discovery.

Already, some researchers have used machine learning to turn conjectures into theorems — a process called automated theorem proving. The goal of the Ramanujan Machine, instead, is to identify promising conjectures in the first place. This has previously been the domain of human mathematicians, who have come up with famous proposals such as Fermat's Last Theorem, which claims that there are no three positive integers that can solve the equation an + bn = cn when n is greater than 2. (That famous conjecture was scribbled in the margins of a book by mathematician Pierre de Fermat in 1637 but wasn't proven until 1994.)

To direct the Ramanujan Machine, the researchers focused on fundamental constants, which are numbers that are fixed and fundamentally true across equations. The most famous constant might be the ratio of a circle's circumference to its diameter, better known as pi. Regardless of the size of the circle, that ratio is always 3.14159265… and on and on.

214